On the Fourier cosine-Kontorovich-Lebedev generalized convolution transforms
نویسندگان
چکیده
منابع مشابه
Integral Transforms of Fourier Cosine Convolution Type
which has the following property Fc(f ∗ g)(x) = (Fcf)(x)(Fcg)(x). (3) The theory of integral transforms related to the Fourier and Mellin convolutions is well developed [2, 6, 10, 11, 12, 13, 19] and has many applications. Some other classes of integral transforms, that are not related to any known convolutions, are considered in [14, 15]. In this paper we investigate integral transforms of the...
متن کاملThe Kontorovich – Lebedev Integral Transforms and Their Inverses ∗
The numerical evaluation of the transforms in the title, and their inverses, is considered, using a variety of decomposition, truncation, and quadrature methods. Extensive numerical testing is provided and an application given to the numerical evaluation of the kernel of a Fredholm integral equation of interest in mixed boundary value problems on wedge-shaped domains. AMS subject classification...
متن کاملCosine Products, Fourier Transforms, and Random Sums
one gets the first actual formula for 7r that mankind ever discovered, dating from 1593 and due to Frangois Viete (1540-1603), whose Latinized name is Vieta. (Was any notice taken of the formula's 400th anniversary, perhaps by the issue of a postage stamp?) From the samples of a function t(x) at equally spaced points x", n E z, one can reconstruct the complete function with the aid of sin x/x, ...
متن کاملSparse Generalized Fourier Transforms ∗
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 2013
ISSN: 0862-7940,1572-9109
DOI: 10.1007/s10492-013-0023-5